Accurate 3D action recognition using learning on the Grassmann manifold

نویسندگان

  • Rim Slama
  • Hazem Wannous
  • Mohamed Daoudi
  • Anuj Srivastava
چکیده

In this paper we address the problem of modelling and analyzing human motion by focusing on 3D body skeletons. Particularly, our intent is to represent skeletal motion in a geometric and e cient way, leading to an accurate action-recognition system. Here an action is represented by a dynamical system whose observability matrix is characterized as an element of a Grassmann manifold. To formulate our learning algorithm, we propose two distinct ideas: (1) In the first one we perform classification using a Truncated Wrapped Gaussian model, one for each class in its own tangent space. (2) In the second one we propose a novel learning algorithm that uses a vector representation formed by concatenating local coordinates in tangent spaces associated with di↵erent classes and training a linear SVM. We evaluate our approaches on three public 3D action datasets: MSR-action 3D, UT-kinect and UCF-kinect datasets; these datasets represent di↵erent Email addresses: [email protected] (Rim Slama), [email protected] (Hazem Wannous), [email protected] (Mohamed Daoudi), [email protected] (Anuj Srivastava) Preprint submitted to Pattern Recognition August 14, 2014 kinds of challenges and together help provide an exhaustive evaluation. The results show that our approaches either match or exceed state-of-the-art performance reaching 91.21% on MSR-action 3D, 97.91% on UCF-kinect, and 88.5% on UT-kinect. Finally, we evaluate the latency, i.e. the ability to recognize an action before its termination, of our approach and demonstrate improvements relative to other published approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensional Object Recognition via Subspace Representation on a Grassmann Manifold

In this paper, we propose a method for recognizing three-dimensional (3D) objects using multi-view depth images. To derive the essential 3D shape information extracted from these images for stable and accurate 3D object recognition, we need to consider how to integrate partial shapes of a 3D object. To address this issue, we introduce two ideas. The first idea is to represent a partial shape of...

متن کامل

A Grassmann framework for 4D facial shape analysis

In this paper, we investigate the contribution of dynamic evolution of 3D faces to identity recognition. To this end, we adopt a subspace representation of the flow of curvature-maps computed on 3D facial frames of a sequence, after normalizing their pose. Such representation allows us to embody the shape as well as its temporal evolution within the same subspace representation. Dictionary lear...

متن کامل

3D Object Recognition with Enhanced Grassmann Discriminant Analysis

Subspace representation has become a promising choice in the classification of 3D objects such as face and hand shape, as it can model compactly the appearance of an object, represent effectively the variations such as the change in pose and illumination condition. Subspace based methods tend to require complicated formulation, though, we can utilize the notion of Grassmann manifold to cast the...

متن کامل

Efficient Algorithms for Inferences on Grassmann Manifolds

Linear representations and linear dimension reduction techniques are very common in signal and image processing. Many such applications reduce to solving problems of stochastic optimizations or statistical inferences on the set of all subspaces, i.e. a Grassmann manifold. Central to solving them is the computation of an “exponential” map (for constructing geodesics) and its inverse on a Grassma...

متن کامل

Learning Linear Dynamical Systems with High-Order Tensor Data for Skeleton based Action Recognition

In recent years, there has been renewed interest in developing methods for skeleton-based human action recognition. A skeleton sequence can be naturally represented as a high-order tensor time series. In this paper, we model and analyze tensor time series with Linear Dynamical System (LDS) which is the most common for encoding spatio-temporal time-series data in various disciplines dut to its r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2015